Identification and Estimation of River Bank Erosion along Brahmaputra and Barak Rivers in Assam during 1996-2002 using Satellite Remote Sensing Techniques.

December 2004

Prepared by

Water Resources Division RS & GIS Applications Area National Remote Sensing Agency Hyderabad

Prepared for

Superintending Engineer Hydrological Observation Circle Central Water Commission Guwahati, Assam.

Study Team

Smt. P.Manjusree Scientist / Engineer "SD" Water Resources Division

Shri.T.Kiran Kumar Scientist / Engineer "SD" Water Resources Division

Shri.G.Srinivasa Rao Scientist / Engineer "SE" Water Resources Division

Shri.V.Bhanu Murthy Head, Water Resources Division

Contents

1.0 Introduction

- 1.1 Monitoring of river bank erosion
- 1.2 Satellite Remote Sensing
- 1.3 Genesis of the study
- 1.4 Objective of the study

2.0 Study Area

2.1 Satellite data

3.0 Methodology

- 3.1 Preparation of map base
- 3.2 Rectification of satellite data
- 3.3 Preparation of ancillary layers
- 3.4 Preparation of River and Bank lines
- 3.5 Generation of Statistics
- 3.6 Preparation of outputs
 - 3.6.1 Generation of photo products
 - 3.6.2 Generation of bank erosion maps
- 4.0 Observations

List of Tables, Figures and Annexures

List of Tables

Table-1: Geo-graphical extent of the study area

Table-2: Satellite data

Table-3: Projection parameters of the satellite data

Table-4: District-wise erosion and deposition statistics

List of Figures

Figure-1: Study area

- Figure-2: Schematic representation of the methodology
- Figure-3: Satellite data of the study area for the year 1996
- Figure-4: Flowchart of the methodology

List of Annexures

Annexure-I: Erosion and Deposition statistics at different pockets Annexure-II: Erosion map plates

- Plate-1: Erosion map showing Brahmaputra River in part of Tinsukia district
- Plate-2: Erosion map showing Brahmaputra River in part of Tinsukia district
- Plate-3: Erosion map showing Brahmaputra River in part of Tinsukia and Dhemaji districts
- Plate-4: Erosion map showing Brahmaputra River in part of Dibrugarh, Tinsukia and Dhemaji districts
- Plate-5: Erosion map showing Brahmaputra River in part of Dibrugarh, Tinsukia and Dhemaji districts
- Plate-6: Erosion map showing Brahmaputra River in part of Dibrugarh and Dhemaji districts
- Plate-7: Erosion map showing Brahmaputra River in part of Dibrugarh district

- Plate-8: Erosion map showing Brahmaputra River in part of Dhemaji and Dibrugarh districts
- Plate-9: Erosion map showing Brahmaputra River in part of Dhemaji and Dibrugarh districts
- Plate-10: Erosion map showing Brahmaputra River in part of Dhemaji and Dibrugarh districts
- Plate-11: Erosion map showing Brahmaputra River in part of Jorhat, Sibsagar, Dhemaji and Dibrugarh districts
- Plate-12: Erosion map showing Brahmaputra River in part of Jorhat, Sibsagar, Dhemaji and Dibrugarh districts
- Plate-13: Erosion map showing Brahmaputra River in part of Jorhat, Sibsagar, Dhemaji and Lakhimpur districts
- Plate-14: Erosion map showing Brahmaputra River in part of Jorhat and Lakhimpur districts
- Plate-15: Erosion map showing Brahmaputra River in part of Golaghat, Jorhat and Lakhimpur districts
- Plate-16: Erosion map showing Brahmaputra River in part of Golaghat, Sonitpur and Lakhimpur districts
- Plate-17: Erosion map showing Brahmaputra River in part of Golaghat, and Sonitpur districts
- Plate-18: Erosion map showing Brahmaputra River in part of Nowgong, Karbi Anglong and Golaghat districts
- Plate-19: Erosion map showing Brahmaputra River in part of Nowgong, Karbi Anglong and Sonitpur districts
- Plate-20: Erosion map showing Brahmaputra River in part of Nowgong and Sonitpur districts
- Plate-21: Erosion map showing Brahmaputra River in part of Nowgong and Sonitpur districts
- Plate-22: Erosion map showing Brahmaputra River in part of Marigaon, Nowgong, Darrang and Sonitpur districts
- Plate-23: Erosion map showing Brahmaputra River in part of Marigaon and Darrang districts
- Plate-24: Erosion map showing Brahmaputra River in part of Kamrup, Marigaon and Darrang districts

- Plate-25: Erosion map showing Brahmaputra River in part of Kamrup and Darrang districts
- Plate-26: Erosion map showing Brahmaputra River in part of Kamrup and Nalbari districts
- Plate-27: Erosion map showing Brahmaputra River in part of Kamrup, Barpeta and Nalbari districts
- Plate-28: Erosion map showing Brahmaputra River in part of Kamrup, Golpara and Barpeta districts
- Plate-29: Erosion map showing Brahmaputra River in part of Golpara, Bongaigaon and Barpeta districts
- Plate-30: Erosion map showing Brahmaputra River in part of Golpara, Bongaigaon , Barpeta and Dhubri districts
- Plate-31: Erosion map showing Brahmaputra River in part of Golpara, Bongaigaon and Dhubri districts
- Plate-32: Erosion map showing Brahmaputra River in part of Golpara and Dhubri districts
- Plate-33: Erosion map showing Brahmaputra River in part of Dhubri district
- Plate-34: Erosion map showing Brahmaputra River in part of Dhubri district
- Plate-35: Erosion map showing Barak River in part of Cachar, Hailakhandi and Karimganj districts
- Plate-36: Erosion map showing Barak River in part of Cachar district
- Plate-37: Erosion map showing Barak River in part of Cachar district
- Plate-38: Erosion map showing Brahmaputra River on 1:700,000 scale
- Plate-39: Erosion map showing Brahmaputra and Barak Rivers on 1:700,000 scale
- Plate-40: Erosion map showing Brahmaputra and Barak Rivers on 1:1,000,000 scale

Introduction

1.0 Introduction

The Brahmaputra in Assam is one of the largest rivers in the world and carries over 30% of the total water resources of the country. The channel of the river is characterized by rapid aggradations, dramatic channel shifts and excessive bank line recession. In the foothill region, alluvial fans and braided channels exist filled with deposition of coarse alluvial materials due to sudden change in gradient of the rivers.

Bank erosion in one of the most commonly experienced effects due to high inflows, excessive sediment charge and channel shift of the river on either side. As the discharge of the stream increases, the depth and the mean velocity increases, due to which river banks are subjected to greater erosive action. An increase in the discharge increases high stream power of the flow that would cause more bank erosion. As the severity and effect of hydraulic forces increase manifold during the flood, the rate of erosion increases rapidly.

Excessive sediment load is mainly due to the frequent seismic disturbances of low magnitudes and earthquake of disastrous nature in combination with the deforestation in upper catchment area of the river basins. In a braided river like the Brahmaputra, short time channel migration is quite drastic.

The tributaries flowing through Sikkim and North Bengal have steep slopes and bring down large quantity of the silt with high velocity, resulting in aggradations of riverbeds, erosion of banks and changing of the river course. Deforestation, cutting in hillside for developmental works like roads and shifting cultivation cause further problem by way of soil erosion and quick runoff. The heavy silt load results in cross channels and formation of shoals and bars, braiding and erosion of banks.

1.1 Monitoring River Bank Erosion

There are direct and indirect methods for monitoring the river bank erosion. The direct method is taking measurements from the field in terms of linear rates of erosion, volumes of erosion and channel cross section. The indirect method is by analyzing the archival sources that exist at various timescales with the sediment records. The archive sources can be conventional survey maps, aerial photos or satellite images.

1.2 Satellite Remote Sensing

In the recent years, Satellite Remote Sensing Technology has successfully proven itself as a valuable information generator for various river engineering studies. The potential of remote sensing data is that it is highly reliable, accurate and cost effective. Using high-resolution data of LISS-III/IV and PAN sensors aboard Indian Remote Sensing (IRS) satellites like IRS-1C, 1D & P6, the latest river configuration, shift in the river courses, formation of new channels/oxbow lakes, bank erosion/deposition, drainage-congested areas, etc. can be mapped at different scales. Since accurate river configuration is obtained, it can be used for laying models for conducting river behavior studies. Information derived from remote sensing can be used for other river morphological application studies like monitoring the existing flood control works and identification of vulnerable reaches, planning bank protection works, planning drainage improvement works etc. The changes in the river configuration can be monitored at regular intervals of time.

1.3 Genesis of the study

Central Water Commission is a premier Technical Organization in the country in the field of Water Resources under Ministry of Water Resources and is responsible for various water management activities throughout the country for purpose of Flood Control, Irrigation, Navigation, Drinking Water Supply and Water Power Development etc. in consultation with the State Governments concerned. It is also involved in Flood Management and Development and Operation of Flood Forecasting System and river morphological studies, schemes for bank/coastal protection and preparation of relevant status reports and manuals.

Central Water Commission (CWC), Guwahati has approached National Remote Sensing Agency (NRSA), Department of Space, Govt. of India, to study the river bank erosion in the main Brahmaputra and Barak river system. In this connection the concerned officials of CWC Guwahati visited NRSA during Jan 2003 and had discussions to take up the study. The user was interested to procure the high resolution satellite images of 1996 and 2002 besides bank erosion maps during the years 1996 - 2002 on 1:50,000 scale. Accordingly a project proposal was prepared and the cost of the project was estimated to be Rs.18.38 Lakhs. The duration of the execution of the project was estimated to be about 8 months.

1.4 Objective of the study

- To provide annotated satellite images on 1:50,000 scale covering main Brahmaputra River and Barak River in Assam for the post flood seasons of 1996 and 2002.
- To provide maps showing location and extent of river bank erosion on 1:50,000 scale along the main Brahmaputra and Barak rivers in Assam during the years 1996 - 2002 both in hard and soft copies.

Study Area

2.0 Study Area

The study area is the main Brahmaputra reach from Sunpura in Tinsukia district to Patakata in Dhubri district and Barak River from Rabipur in Cachar district to Katakhal in Karimganj district in Assam as shown in Figure-1. The Geo-graphical extent of the study area is shown in Table-1. The study area is covered in about 50 topomaps on 1:50,000 scale. The entire study area is covered in thirty seven plates on 1:50,000 scale and 2 plates on 700,000 scale and in one plate on 1Million scale for a complete overall view. A total of 80 satellite image plates were designed both for 1996 and 2002 years respectively and 40 erosion maps were designed showing the river bank erosion during 1996-2002.

Figure-1: Location of the study area

S.	River	From		То	
No		Long(E)	Lat(N)	Long(E)	Lat(N)
1	Brahmaputra	89 49 53	25 43 33	95 51 54	27 49 55
2	Barak	92 29 53	24 42 42	93 04 28	24 52 39

Table: 1 Geo-graphical extent of the study area

2.1 Satellite data

IRS-1C and IRS-1D satellites which were launched during December 1995 and September 1997 respectively have LISS-III sensor, whose characteristics were shown in Table-2. Post flood season satellite data of IRS-1C/1D LISS-III sensor which has a spatial resolution of 23m was procured to carry out the study. Wherever post flood season satellite data during November/December was not available, January and February data of the succeeding year was procured as shown in Table-3. Resampled images of the satellite data of different paths and row for the year 1996 are shown in Figure-2.

S.No	Sensor	Value
	parameters	
1	Spectral	4 bands
	resolution	Band2: (0.52-0.59micrometers)- Green
		Band3: (0.62-0.68 micrometers)- Red
		Band4: (0.77-0.86 micrometers)- Near Infrared
		Band5: (1.55-1.7 micrometers)- SWIR
2	Spatial	23.5 m (visible and near IR region)
	resolution	70.5 m (SWIR)
3	Swath	141 Km (visible and near IR region)
		148 Km (SWIR)
4	Repetitivity	24 days

Table: 2 Characteristics of IRS-1C LISS-III sensor

S.No.	Date of pass	Satellite/Sensor	Path/ Row
1	11-Jan-97	IRS - 1C/LISS-III	109-52
2	05-Nov-96	IRS - 1C/LISS-III	110-53
3	04-Dec-96	IRS - 1C/LISS-III	111-52
4	09-Dec-96	IRS - 1C/LISS-III	112-52
5	09-Dec-96	IRS - 1C/LISS-III	112-53
6	10-Mar-97	IRS - 1C/LISS-III	111-54
7	19-Feb-97	IRS - 1C/LISS-III	112-54
8	14-Dec-96	IRS - 1C/LISS-III	113-52
9	28-Nov-02	IRS - 1D/LISS-III	109-53
10	25-Nov-02	IRS - 1D/LISS-III	110-53
11	22-Nov-02	IRS - 1D/LISS-III	111-53
12	14-Dec-02	IRS - 1D/LISS-III	112-52
13	19-Jan-03	IRS - 1C/LISS-III	112-52
14	02-Feb-03	IRS - 1D/LISS-III	112-54
15	08-Dec-02	IRS - 1D/LISS-III	114-52

Table: 3 Satellite data

109-52 11-Jan-1997

110-53 05-Nov - 1996

111-52 04- Dec -1996

112-52 09- Dec -1996

112-53 09-Dec -1996

113-52 14 -Dec -1996

111-54 10 -Mar-1997

112-54 19-Feb-1997

Figure-2: Satellite data of the study area for the year 1996

Methodology

3.0 Methodology

The methodology can be broadly categorized into five major steps as shown in Figure-3. The steps followed in the analysis of the study are shown as flowchart in Figure-4.

Figure-3: Schematic representation of the methodology

Figure-4: Flowchart of the methodology

3.1 Preparation of map base

ERDAS/Imagine imaging software was used to carry out the satellite data analysis. Using the available maps, a rectified master database was prepared with the projection Lambert Conformal Conic (LCC) and the parameters as shown in Table-3.

S.No	Parameter	Value
1	Spheroid Name	Modified Everest
2	Datum Name	Modified Everest
3	Latitude of 1 st standard parallel	23:02:30.000000 N
4	Latitude of 2 nd standard parallel	28:12:30.000000 N
5	Longitude of central meridian	92:45:00.000000 E
6	Latitude of origin of projection	25:38:04.000000 N
7	False easting at central meridian	1000000.000000 meters
8	False easting at origin	1000000.000000 meters

Table-3: Characteristics of the LCC projection

3.2 Rectification of satellite data

All the satellite data of 1996 and 2002 were geometrically rectified to the master map base for positional accuracy and the ground control points (GCP's) were appropriately chosen so that Root Mean Square (RMS) error was less than half a pixel (<12m). Image enhancement techniques were applied on all the individual satellite data scenes to obtain better contrast among the features especially between land and water. It is also worth mentioning that efforts were made to maintain a common Look-Up-Table (LUT) for all the satellite data, to maintain uniformity in the enhancement over entire study area. The satellite data was mosaiced for the individual years of 1996 and 2002.

3.3 Preparation of ancillary layers

Different layers consisting of administrative boundaries (state, district) and transport network such as road, railway and major settlements were prepared in the GIS environment at 1: 50,000 scale. Since the transport network is dynamic in nature, the prepared layers were also superimposed on the satellite data and were updated accordingly. Sufficient care was taken while cleaning and building the topology of all the layers.

3.4 Preparation of River and Banklines

The procure satellite data was analysed and river configuration of the year 2002 was delineated along with major permanent water bodies. Three different symbology codes were provided for river water as "1", sand as "2" and island as "3". The active river channel and the permanent water bodies were given cyan color, sand was given grey

and island was given yellow. The banklines of the rivers for the year 1996 and 2002 were prepared. Both the banklines were intersected to identify and estimate the amount of erosion and deposition at different pockets along the main Brahmaputra and Barak river stretch. The final layer was again edited, cleaned and build and symbology codes were provided. The erosion code was given as 1 and deposition code as 2. The color code for erosion was magenta and violet for deposition. Nomenclature was provided to the erosion and deposition at different pockets of the river. Some of the erosion and deposition had been observed within the islands itself like in Majuli Island. Such areas have also been considered for representation.

3.5 Generation of Statistics

The amount of erosion and deposition at each pocket of the river stretch was calculated as shown in the annexure-I. The total amount of erosion and deposition in each district of Assam state during 1996-2002 was also estimated as shown in Table-4.

District Name	Area eroded (ha)	Area deposited (ha)
Barpeta	2098	146
Bongaigaon	316	142
Cachar	270	146
Darrang	1165	563
Dhemaji	2929	235
Dhubri	2876	377
Dibrugarh	1296	34
Golaghat	2277	219
Golpara	1429	103
Hailakhandi	9	4
Jorhat	1673	320
Kamrup	784	332
Karimganj	14	9
Lakhimpur	633	342
Marigaon	3328	77
Nalbari	206	124
Nowgong	711	357
Sibsagar	354	46
Sonitpur	3751	1689
Tinsukia	2143	589
Total	28049	5854

Table-4:	District-wise	erosion and	deposition	statistics
Tuble II	Bischiet Wise	ci obioni ana	acposition	Scaciscics

3.6 Preparation of outputs

80 map compositions were designed for providing the annotated satellite images for both the years of 1996 and 2002 and 40 map compositions for providing the erosion maps (see annexure-II). All the layers including river, sand, islands, state /district boundary, road, rail and major settlements were integrated in the map design. As per the user request, lat/long grids, title, legend, scale, plate reference

map, SOI reference map were provided in the map. A tabular column was provided showing the erosion and deposition statistics corresponding to the relevant plate. It is to be mentioned that erosion and deposition area less than 5 hectares had not been considered for tabulating. The plate reference map shows all the plates and the selected plate map. The SOI reference map denotes in which 50,000 scale topomap, the selected plate map covers.

Further, sample products were generated consisting of annotated satellite images of 1996 and 2002 and corresponding bank erosion map covering Guwahati city. These sample products were submitted to the user for concurrence and suggestions. As per the user requirement, the final products were generated.

3.6.1 Generation of photo products

The 80 annotated satellite image compositions were converted into image format and then submitted for generation of 80 photographic products.

3.6.2 Generation of bank erosion maps

The final 40 bank erosion map compositions were printed on a HPdesignjet plotter to obtain the bank erosion maps.

Observations

4.0 Observations

The following observations were made based on the analysis of satellite data.

- 1. In Assam state, the amount of erosion due to Brahmaputra and Barak rivers during 1996-2002 is more than the amount of deposition.
- 2. The total area of erosion along Brahmaputra and Barak Rivers in the Assam state was found to be 28,262 hectares during 1996-2002.
- 3. The total area of deposition along Brahmaputra and Barak Rivers in the Assam state was found to be 5,854 hectares during 1996-2002.
- 4. The total area of erosion along Brahmaputra River only during 1996-2002 was found to be 27,756 hectares.
- 5. The total area of deposition along Brahmaputra River only during 1996-2002 was found to be 5695 hectares.
- 6. The total area of erosion along Barak River only during 1996-2002 was found to be 293 hectares.
- 7. The total area of deposition along Barak River only during 1996-2002 was found to be 159 hectares
- 8. Maximum erosion was found at 92° 02' 24'' E and 26° 17' 09'' N in Marigaon district as shown in Plate-23 and the eroded area was 2611 hectares
- Maximum deposition was found at 92° 32' 50'' E and 26° 37' 15'' N in Sonitpur district as shown in Plate-21 and the deposited area was 469 hectares
- 10. The maximum amount of erosion along the main Brahmaputra River during 1996-2002 was found in Sonitpur district and the eroded area was about 3751 hectares.
- 11. The maximum amount of deposition along the main Brahmaputra River during 1996-2002 was found in Sonitpur district and the deposited area was about 1689 hectares.
- 12. The minimum amount of erosion along the main Brahmaputra River during 1996-2002 was found in Nalbari district and the eroded area was about 206 hectares.
- 13. The minimum amount of deposition along the main Brahmaputra River during 1996-2002 was found to be in Dibrugarh district and the deposited area was about 34 hectares.
- 14. Most of the erosion and deposition due to Barak River was found in Cachar district and the eroded and deposited area were 270 ha and 146 ha respectively.

Annexure-I

S.No	Erosion Code	Area(ha)	Deposition Code	Area(ha)
1	E2	108	D2	26
2	E3	114	D3	15
3	E4	95	D4	162
4	E5	69	D5	10
5	E6	90	D6	10
6	E7	11	D7	67
7	E8	28	D8	164
8	E9	7	D9	18
9	E10	13	D10	15
10	E11	49	D11	5
11	E12	19	D12	38
12	E13	10	D13	11
13	E14	10	D14	12
14	E16	100	D15	16
15	E17	50	D16	35
16	E19	638	D17	16
17	E20	54	D18	25
18	E21	7	D19-a	7
19	E22	46	D19-b	49
20	E23	29	D20	16
21	E24	17	D21	8
22	E25	1165	D22	9
23	E27	27	D23	7
24	E28	70	D24	14
25	E29	160	D25	31
26	E30	120	D26	8
27	E31	8	D27	27
28	E32	66	D28	12
29	E33	21	D29	35
30	E34	546	D30	12
31	E35	48	D31	8
32	E36	11	D32	8
33	E37	42	D33	29
34	E38	17	D34	12
35	E39	40	D35	66
36	E40	570	D36	69
37	E41	21	D38	7
38	E43	6	D39	6
39	E44	6	D40	83
40	E45	13	D41	214
41	E46	41	D42	15
42	E47	7	D43	10
43	E48	44	D44	107
44	E49	7	D45	.31
45	E50	386	D46	56
46	E51	7	D47	58
47	E52	115	D48	215
48	E53	141	D49	109

Erosion and Deposition statistics during 1996-2002 at different pockets of River Brahmaputra and Barak in Assam

	6
50 E55 39 D51	7
51 E56 39 D52	49
52 E57 12 D53	9
53 E58 7 D54	9
54 E59 30 D55	8
55 E60 13 D56	8
56 E61 9 D57	138
57 E62 40 D58	12
58 E63 10 D59	34
59 E64 30 D60	6
60 E65 34 D61	7
61 E66 10 D62	192
62 E67 13 D63	9
63 E68 6 D64	6
64 F69 357 D65	85
65 E70 528 D66	18
66 E71-a 266 D67	10
67 F71-b 60 D68	68
68 E72 12 D60	424
60 E73 64 D70	4 <u>2</u> 4
70 E74 12 D72	20
70 E74 15 D72	50
71 E/S 7 D/3	60
72 E/0 23 D/4	67
73 E/7 78 D/5	17
74 E78 22 D76	19
75 E79 26 D77	12
76 E80 27 D78	18
77 E81 6 D79	16
78 E82 73 D80	136
79 E84 74 D81	9
80 E85 27 D82	15
81 E86 88 D83	19
82 E87 19 D84	11
83 E88 6 D85	41
84 E89 76 D86	35
85 E90 35 D87	9
86 E91 224 D88	13
87 E92 215 D89	11
88 E93 105 D90	10
89 E94 35 D91	69
90 E95-a 164 D92	68
91 E95-b 10 D93	7
92 E96 61 D94	12
93 E97 111 D96	14
94 E98 98 D97	54
95 E99 31 D98	89
96 E100 25 D99	55
97 E101 12 D100	5
98 E102 38 D101	17
99 E103 23 D102	19
100 E104 36 D103	11
101 E105 125 D104	8
102 E106 50 D105	22
103 E107 53 D106	12

104	E108	25	D107	18
105	E109	82	D108	6
106	E110	50	D109	11
107	E111	192	D110	7
108	E112	278	D111	180
109	E113-a	183	D112	7
110	E113-b	8	D114	11
111	E114-a	25	D115	6
112	E114-b	156	D116	22
113	E115	446	D117	19
114	E116	763	D118	10
115	E117	139	D119	6
116	E119	32	D120	6
117	E120	764	D121	182
118	F121	259	D122	12
119	E122	7	D123	12
120	E122	135	D120	23
120	E120	800	D124	6
121	E125	19	D125	23
122	E126	19	D120	15
123	E127	494	D127	55
124	E127	21	D120	15
120	E120	21	D129	10
120	E129	9	D130	9
127	E130	1	D131	Э 7
120	E131	50	D132	/
129	E132	26	D133	29
130	E133	23	D134	9
131	E134	360	D135	16
132	E135	239	D137	5
133	E136	70	D138	1
134	E137	955	D139	13
135	E138	10	D140	5
136	E139	12	D141	13
137	E140	82	D142	469
138	E141	/		
139	E142	37		
140	E143	1		
141	E144	17		
142	E145	48		
143	E146	129		
144	E147	38		
145	E148	38		
146	E149	78		
147	E150	455		
148	E151	1055		
149	E152	2611		
150	E153	12		
151	E154	15		
152	E155	7		
153	E156	9		
154	E157	17		
155	E158	23		
156	E159	24		
157	E160	31		
158	E161	22		

159	E162	7	
160	E163	8	
161	E164	50	
162	E165	10	
163	E166	88	
164	E167	62	
165	E168	26	
166	E169	19	
167	E171	15	
168	E172	135	
169	E173	6	
170	E174	164	
171	E175	29	
172	E176	441	
173	E177	22	
174	E178	89	
175	E179	121	
176	E180	257	
170	E181	31	
172	E182	063	
170	E183	303	
179	E103	40	
100	E104	0	
101	E100	0	
182	E180	198	
183	E187	190	
184	E188	23	
185	E189	21	
186	E190	165	
187	E191	29	
188	E192	48	
189	E193	14	
190	E194	26	
191	E195	121	
192	E196	45	
193	E197	13	
194	E198	214	
195	E199	9	
196	E200	321	
197	E201	16	
198	E202	7	
199	E203	769	
200	E204	6	
201	E205	309	
202	E206	105	
203	E207	27	
204	E208	7	
205	E209	51	
206	E210	11	
207	E211	58	
208	E212	252	
209	E213	506	
210	E214	158	
211	E215	70	
212	E216	926	
213	E217	29	

214	E218	172	
215	E219	28	
216	E220	8	
217	E221	37	
218	E222	6	
219	E223	8	
220	E224	8	
221	E225	12	
222	E226	10	
223	E227	6	
224	E228	8	
225	E229	5	
226	E230	11	
227	E231	17	
228	E232	5	
229	E233	6	
230	E234	17	
231	E235	8	
232	E236	11	
233	E237	6	

Annexure-II

